PrEP effectiveness and cost effectiveness

Review of the literature

No. 2018/06Ae, The Hague, March 27, 2018

Backgrounddocument to:

Preventive use of HIV medication No. 2018/06e, The Hague, March 27, 2018

Health Council of the Netherlands

contents

01	Overview tables of PrEP studies	3
	Table 1. Summary of most relevant outcomes of PrEP-trials worldwide	5
	Table 2. List of individual PrEP trials	6
	Tabel 3. Cost effectiveness studies on PrEP for MSM	
	in developed countries	7
	References	8

01 summary tables of PrEP studies

This background document expands on some of the scientific literature used during the preparation of the advisory report: *PrEP (Pre Exposure Prophylaxis for prevention of HIV)* This includes a summary of the results of the PrEP trials (Table 1), a more detailed description of the most relevant trials (Table 2), and an overview of the cost-effectiveness studies with specific reference to high-risk MSM in affluent countries (Table 3).

Table 1

Table 1 gives an overview of published reviews on the effectiveness of PrEP supplemented by recent publications on new RCTs and cohort studies. Five systematic reviews were used (from the period 2012-2016), which summarised the results of RCTs and follow-up studies, and five studies with supplementary information: European studies on men who have sex with men (MSM), and as-yet unfinished implementation studies.

Reviews of PrEP studies:

- 1. Cochrane 2012 (review of 6 RCTs)¹;
- CDC PrEP guidelines 2014 (description of 2 RCTs in MSM, 5 in heterosexuals, 1 in injecting drug users)²;
- 3. NHS report 2015 (Evidence review with descriptions of the main RCTs up to October 2014)³;
- Fonner 2016 (Review and meta-analysis for WHO PrEP guideline⁴ with 15 RCTs and 3 observational studies)⁵;
- 5. Hanscom 2016 (meta-analysis 5 trials in women)⁶

PrEP studies with supplementary information:

- MSM in Europe (completed): PROUD⁷, IPERGAY⁸
- Recent/current trials: AMPrEP (Amsterdam)⁹ and Be-PrEP-ared (Antwerp),¹⁰ VicPrEP Australia.¹¹

Effectiveness was calculated by comparing the incidence of HIV in the group not using PrEP with that of the group using PrEP. In this way, risk reduction can be determined (% of the reduction of the risk of HIV). The quality of the studies reflects the quality of what was reported in the reviews on the quality of individual RCTs and follow-up studies. The table gives the findings on MSM separately. Adherence to therapy, safety and side effects are also reproduced in brief in the table.

Table 2

Table 2 gives an overview of the most important individual PrEP trials⁷⁻²⁴ and describes the characteristics and results of these trials (name and reference in the first column), in which the effectiveness of TDF/FTC as PrEP was investigated.

Table 3

Table 3 summarises the most important studies concerning cost effectiveness in men who have sex with men (MSM) in affluent countries.²⁵⁻³⁶ The costs of PrEP and HIV treatment have a big effect on cost effectiveness (the incremental cost-effectiveness ratio, ICER), which

is usually expressed as the price per quality adjusted life year in good health (QALY). Costs vary enormously in time and between countries. The outcomes (ICER or price per prevented infection) and important scientific hypotheses in the base case of every study are reported on. The hypotheses concern the effectiveness, risk behaviour, prevalence or incidence of HIV in the PrEP target group (sometimes also indicated as the number needed to treat [NNT]). Not every study examines all hypotheses. In conclusion, in each study a number of striking additional hypotheses or findings are reported.

The table is ordered from the newest publication to the oldest. The most recent publications are the most relevant as more scientific data are included. Nichols et al³² is the only publication that specifically concerns the Netherlands.

Table 1. Summary of most relevant outcomes of PrEP-trials worldwide

Outcome variable	Effectivity		Risk reduction	Number of participants	Quality of trial	Other remarks	
	Control group PrEP group		(per personyear)	(number of trials)	-		
Effect on hiv incidence	All groups:All groups:0.7-9.0% incidence0.0-4.7%incidence		All groups: 51% (95%CI: 27-67%)ª	~20.000 16 trials (+ 4 ongoing)	Low-high	2 trials of low quality (on women and serodiscordant couples). MSM trials in the US and Europe high quality	
	MSM: 3.0-9.0% incidence	MSM: 0-2.9% incidence	Men: 62% (95%CI: 40-75%) ^a MSM: 66% (95%CI: 20-85%) ^a	Men: 8.700 (7 trials) MSM: 3.166 (4 trials + 4 ongoing)	Medium-high		
Adherence to therapy	All groups: 30-94%			11 trials		Is used to assess adherence: by drug levels in blood elf-report/pill-count	
	MSM: 51-94%			MSM: 5 trials		P: proportion of sex acts adequately covered low, but ates in blood high (IPERGAY)	
Side effects <i>Mild</i>	Nausea, gastro-intestinal symptoms, headache		In RCTs no/little difference compared to placebo	16 trials	High quality	TDF-FTC is used for HIV-treatment and found to be safe; difference with HIV-negative population not reported.	
Severe	Renal function and bone mineral density; depression		Effect on kidney or bone is subclinical and reversible; depression reported in 1 trial only, no clear difference with control group after correction			Note that trials were in adults; not enough data in adolescents or younger persons	
Resistance	$\begin{array}{rl} 17\% \ (8/46) \ \text{of HIV-inf} \\ \text{before start PrEP} \\ (7/26 \ \text{in PrEP arm;} \\ 1/20 \ \text{placebo arm}) \\ \end{array} \begin{array}{l} 2.0\% \ (5/247) \ \text{of} \\ \text{HIV-inf on PrEP} \\ \text{after start, of which} \\ 5 \ \text{on TDF/FTC (of} \\ 157), \ 0 \ \text{on TDF}^5 \\ \end{array}$		Small numbers. Resistance levels before start higher in PrEP group (RR ^b 3.3[1.1-10]), difference not significant post-randomisation (RR 3.1[0.5-19]). Resistance is more frequently against FTC than TDF	6 trials (review Fonner 2016)⁵	Medium quality	Not investigated (properly) in all studies, resistance may occur more commonly	
STI incidence	STI incidence remain PrEP; no difference b	•	ecrease and may increase slightly with			In general, trials have a relative short follow-up period	
Risk behaviour	•	r of partners, anal sex	ecrease in risk, most found no difference acts), some reported an increase in			Behavior reported in an RCT/cohort-study without placebo is probably not equal to that under non-observed, routine PrEP use	

^a 95%CI: confidence interval, measure of variance around mean; ^b RR relative risk

	Trial	Target group, risk population	Ν	Intervention/control (PrEP = TDF-FTC)	Hiv incidence (per 100 personyears) PrEP versus control group	Risk reduction	Adherence
MSM	IPrex ⁷	MSM/TG ^a (US, S-America, Thailand, S-Africa)	2.499	PrEP/placebo	48/1.251 vs 83/1.248 pers.	44%	90% by pill count; 51% based on blood level
	IPrex OLE ¹⁴	MSM/TGª (US)	1.603	PrEP/placebo (IPrex +OLE; 1225 op PrEP)	1.8 vs 2.6	51%	71% blood level
	PROUD ²⁰	MSM (UK)	544	PrEP immediate vs deferred	1.3 vs 8.9	86%	88% prescription; 100% blood level in sample of participants
	IPERGAY ⁸	MSM (France, Canada)	414	Event-driven PrEP vs placebo	0.94 vs 6.7	86%	43% sex acts covered; 86% blood level (71% in open label extension)
	CDC Safety trial ¹⁵	MSM (US)	400	PrEP immediate vs deferred	0.0 vs 7.0	100%	93% pill count; 79% bottle openings
	Project PrEPare ¹⁷	Young MSM 18-22 yrs (US)	58	PrEP/placebo/ prevention intervention	Not reported		63% in week 4 declining to 20% in week 24
IDU⁵	Bangkok Tenofovir study ¹³ (+ OLE)	Injecting Drug Users	2.413 (787)	PrEP/placebo	0.35 vs 0.68	49%	67%
Hetero M/F⁵	Partners PrEP ¹²	Serodiscordant couples (Kenya, Uganda)	4.747	PrEP and TDF vs placebo	0.5 and 0.65 vs 1.99	75% and 67%	81%
	TDF2 ²³	Heterosexual M/F ^c (Botswana)	1.219	PrEP/placebo	1.2 vs 3.1	62%	80%
	FEM-PREP ²⁴	Women ^c (Kenya, Tanzania, S-Africa)	2.120	PrEP/placebo	4.7 vs 5.0	6%	37%
	VOICE ¹⁹	Women ^c (Uganda, S-Africa, Zimbabwe)	5.029	PrEP/placebo and TDF/placebo	4.7 vs 4.6 and 6.3 vs 4.2	-4% and -49%	30%
	Phase 2 TDF study ²²	Women (Cameroon, Ghana, Nigeria)	936	TDF/placebo	0.86 vs 2.48	65%	Not reported
	IAVI ^{18,21}	MSM, SW ^d , discordant couples (Kenya, Uganda)	114	PrEP/placebo	Not reported		80-90% daily users 55-90% intermittent users
MSM/ new trials	ADAPT ¹⁶	MSM (young, coloured; US)	179	PrEP (daily or on demand)	US	Ongoing	
	AMPREP ⁹	MSM (Netherlands)	376	PrEP (daily or on demand)	Amsterdam 2 seroconversions, 1 despite good adherence	Ongoing	100% for daily users; high for intermittent PrEP use
	Be-PREP-ared ¹⁰	MSM (Belgium)	200	PrEP (daily or on demand)	Antwerpen 0 seroconversions	Ongoing	High
	VicPrEP ¹¹	MSM (Australia)	114	PrEP (daily)	2 seroconversions at start PrEP	Interim analyses	90% blood levels equivalent to 4 or more tablets per week

Table 2. List of individual PrEP trials

^a TG: transgender; ^b IDU: intravenous drug user; ^c M/F: male/female; ^d SW: sexworkers

Tabel 3. Cost effectiveness studies on PrEP for MSM in developed countries

Study	Population	Scenarios/assumptions	Results (ICER)	Remarkable
Cambiano 2017 ²⁵	MSM in the UK	Effectivity 86% Incidence 2.0% per year in target group. Intermittent PrEP £360 per month	Cost-effective after 30 years Cost saving after 40 years	25% of HIV-infections prevented (after 80 years). Effect of price reduction of ARV on cost effectiveness
Koh Jun Ong 2017 ³³	MSM in the UK	Effectivity: 64% Risk behaviour: 20% increase Incidence: 16.9% for highrisk	+£23,500 (€31,900)	PrEP for 1 year, effects over longer period No population group effect
Nichols 2016 ³²	MSM in the Netherlands	Effectivity 80% No change in risk behaviour Following the Dutch HIV epidemic (two scenarios)	€11,000	Stable or decreasing HIV epidemic Population group effect PrEP for 10% of the most active group (2-5% of MSM; >5 partners per year)
MacFAdden 2016 ³¹	MSM Canada	Effectivity 44%-99% No change in risk behaviour Following the epidemiological parameters for Toronto	500,000-800,00CAD\$ 35,000-70,000CAD\$	PrEP for all MSM vs PrEP for highest risk group 10%
Ouellet 2015 ³⁴	MSM Canada	Effectivity 86% No change in risk behaviour NNT 51.78 (as indicator for prevalence)	Cost saving when discounted at 0 or 3%; CAD\$60,311 to CAD\$47,407 at 5% discounting	Intermittent use
Kessler 2014 ²⁹	MSM NY (USA)	Effectivity 44% No change in risk behaviour Comparison between risk groups	Results in costs per infection prevented: \$11 million	Uptake of 50% in target population Comparison of risk groups: PrEP most cost effective with target group of high risk MSM (based on risk behaviour)
Chen 2014 ²⁶	MSM USA	Effectivity 44% No change in risk behaviour Prevalence 19%	\$160,000	Multivariable analyses: best scenario: high adherence and high prevalence
Schneider 2014 ³⁶	MSM Australia	Effectivity varying (75% good adherence and effectivity 95%) No change in risk behaviour	Aus \$400,000 Aus \$110,000	10-30% MSM as base-case 15-30% MSM with 10-50 partners per 6 months
Juusola 2012 ²⁸	MSM USA	Effectivity 44% Prevalence 12,3% No change in risk behaviour	\$172,091 \$216,480	20% uptake 100% uptake
Koppenhaver 2011 ³⁰	MSM USA	Effectivity 44% Prevalence 17.5% No information on risk behaviour	\$570,273	100% uptake
Paltiel 2009 ³⁵	MSM USA	Effectivity 50% Hiv incidence 1.6% per year No change in risk behaviour	\$298,000	All MSM (not limited to high risk group)
Desai 2008 ²⁷	MSM USA	Effectivity 50/70% Prevalence 14.6% No information on risk behaviour	\$31,970	25% high risk MSM

references

- ¹ Okwundu CI, Uthman OA, Okoromah CA. *Antiretroviral pre-exposure prophylaxis (PrEP) for preventing HIV in high-risk individuals*. Cochrane Database Syst Rev 2012; (7): CD007189.
- ² Center for disease control and prevention. *Preexposure prophylaxis for the prevention of HIV infection in the united states - 2014*. Atlanta, 2014.
- ³ NHS England. *Evidence Review: Pre-exposure prophylaxis (PrEP) to prevent the acquisition of HIV in adults*. October 2015.
- ⁴ WHO. *Guideline on when to start antiretroviral therapy and on pre-exposure prophylaxis for HIV.* Geneva, 2015; WHO/HIV/2015.36.
- ⁵ Fonner VA, Dalglish SL, Kennedy CE, Baggaley R, O'Reilly KR, Koechlin FM, et al. *Effectiveness and safety of oral HIV preexposure prophylaxis for all populations*. AIDS 2016; 30(12): 1973-83.
- ⁶ Hanscom B, Janes HE, Guarino PD, Huang Y, Brown ER, Chen YQ, et al. Brief Report: Preventing HIV-1 Infection in Women Using Oral Preexposure Prophylaxis: A Meta-analysis of Current Evidence. J Acquir Immune Defic Syndr 2016; 73(5): 606-8.
- ⁷ Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, Vargas L, et al. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med 2010; 363(27): 2587-99.
- ⁸ Molina JM, Capitant C, Spire B, Pialoux G, Cotte L, Charreau I, et al. On-Demand Preexposure Prophylaxis in Men at High Risk for HIV-1 Infection. N Engl J Med 2015; 373(23): 2237-46.


- ⁹ AMPREP. Biomedical interventions for HIV prevention in MSM in Amsterdam: a demonstration project. https://www.clinicaltrialsregister. eu/ctr-search/trial/2014-002569-32/NL#A. Geraadpleegd: februari 2018.
- ¹⁰ Baetselier I de, Reyniers T, Nostlinger C, Wouters K, Fransen K, Crucitti T, et al. *Pre-Exposure Prophylaxis (PrEP) as an Additional Tool for HIV Prevention Among Men Who Have Sex With Men in Belgium: The Be-PrEP-ared Study Protocol.* JMIR Res Protoc 2017; 6(1): e11.
- ¹¹ Lal L, Audsley J, Murphy D, Fairley CK, Stoove M, Roth N, et al. Medication adherence, condom use and sexually transmitted infections in Australian PrEP users: interim results from the Victorian PrEP Demonstration Project. AIDS 2017; 31(12): 1709–1714.
- ¹² Baeten JM, Donnell D, Ndase P, Mugo NR, Campbell JD, Wangisi J, et al. Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. N Engl J Med 2012; 367(5): 399-410.
- ¹³ Choopanya K, Martin M, Suntharasamai P, Sangkum U, Mock PA, Leethochawalit M, et al. Antiretroviral prophylaxis for HIV infection in injecting drug users in Bangkok, Thailand (the Bangkok Tenofovir Study): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2013; 381(9883): 2083-90.
- ¹⁴ Grant RM, Anderson PL, McMahan V, Liu A, Amico KR, Mehrotra M, et al. Uptake of pre-exposure prophylaxis, sexual practices, and HIV incidence in men and transgender women who have sex with men: a cohort study. Lancet Infect Dis 2014; 14(9): 820-9.

- Grohskopf LA, Chillag KL, Gvetadze R, Liu AY, Thompson M, Mayer KH, et al. Randomized trial of clinical safety of daily oral tenofovir disoproxil fumarate among HIV-uninfected men who have sex with men in the United States. J Acquir Immune Defic Syndr 2013; 64(1): 79-86.
- HIV Prevention Trials Network (HPTN). HPTN 067. A Phase II. Randomized, Open-Label, Pharmacokinetic and Behavioral Study of the Use of Intermittent Oral Emtricitabine/Tenofovir Disoproxil Fumarate Pre-Exposure Prophylaxis (PrEP). https://www.hptn.org/research/ studies/hptn067, geraadpleegd: maart 2018.
- Hosek S, Celum C, Wilson C, Kapogiannis B, Delany-Moretlwe S, Bekker L. Preventing HIV among adolescents with oral PrEP: observations and challenges in the United States and South Africa. J Int AIDS Soc 2016; 19(7(Suppl 6)):
- Kibengo FM, Ruzagira E, Katende D, Bwanika AN, Bahemuka U, 18 Haberer JE, et al. Safety, adherence and acceptability of intermittent tenofovir/emtricitabine as HIV pre-exposure prophylaxis (PrEP) among HIV-uninfected Ugandan volunteers living in HIV-serodiscordant relationships: a randomized, clinical trial. PLoS One 2013; 8(9): e74314.
- Marrazzo JM, Ramjee G, Richardson BA, Gomez K, Mgodi N, Nair G, et al. Tenofovir-based preexposure prophylaxis for HIV infection among African women. N Engl J Med 2015; 372(6): 509-18.
- ²⁰ McCormack S, Dunn DT, Desai M, Dolling DI, Gafos M, Gilson R, et al. Pre-exposure prophylaxis to prevent the acquisition of HIV-1 infection

- (PROUD): effectiveness results from the pilot phase of a pragmatic open-label randomised trial. Lancet 2016; 387(10013): 53-60.
- ²¹ Mutua G, Sanders E, Mugo P, Anzala O, Haberer JE, Bangsberg D, et al. Safety and adherence to intermittent pre-exposure prophylaxis (PrEP) for HIV-1 in African men who have sex with men and female sex workers. PLoS One 2012; 7(4): e33103.
- ²² Peterson L, Taylor D, Roddy R, Belai G, Phillips P, Nanda K, et al. Tenofovir disoproxil fumarate for prevention of HIV infection in women: a phase 2, double-blind, randomized, placebo-controlled trial. PLoS Clin Trials 2007; 2(5): e27.
- ²³ Thigpen MC, Kebaabetswe PM, Paxton LA, Smith DK, Rose CE, Segolodi TM, et al. Antiretroviral preexposure prophylaxis for heterosexual HIV transmission in Botswana. N Engl J Med 2012; 367(5): 423-34.
- ²⁴ Damme L van, Corneli A, Ahmed K, Agot K, Lombaard J, Kapiga S, et al. Preexposure prophylaxis for HIV infection among African women. N Engl J Med 2012; 367(5): 411-22.
- ²⁵ Cambiano V, Miners A, Dunn D, McCormack S, Ong KJ, Gill ON, et al. Cost-effectiveness of pre-exposure prophylaxis for HIV prevention in men who have sex with men in the UK: a modelling study and health economic evaluation. The Lancet Infectious Diseases, October 2017.
- ²⁶ Chen A, Dowdy DW. *Clinical effectiveness and cost-effectiveness of* HIV pre-exposure prophylaxis in men who have sex with men: risk

calculators for real-world decision-making. PLoS One 2014; 9(10): e108742.

- ²⁷ Desai K, Sansom SL, Ackers ML, Stewart SR, Hall HI, Hu DJ, et al. Modeling the impact of HIV chemoprophylaxis strategies among men who have sex with men in the United States: HIV infections prevented and cost-effectiveness. AIDS 2008; 22(14): 1829-39.
- ²⁸ Juusola JL, Brandeau ML. *HIV Treatment and Prevention: A Simple Model to Determine Optimal Investment*. Med Decis Making 2016; 36(3): 391-409.
- ²⁹ Kessler J, Myers JE, Nucifora KA, Mensah N, Toohey C, Khademi A, et al. *Evaluating the impact of prioritization of antiretroviral pre-exposure prophylaxis in New York*. AIDS 2014; 28(18): 2683-91.
- ³⁰ Koppenhaver RT, Sorensen SW, Farnham PG, Sansom SL. The costeffectiveness of pre-exposure prophylaxis in men who have sex with men in the United States: an epidemic model. J Acquir Immune Defic Syndr 2011; 58(2): e51-2.
- ³¹ MacFadden DR, Tan DH, Mishra S. Optimizing HIV pre-exposure prophylaxis implementation among men who have sex with men in a large urban centre: a dynamic modelling study. J Int AIDS Soc 2016; 19(1): 20791.
- ³² Nichols BE, Boucher CAB, van der Valk M, Rijnders BJA, van de Vijver D. Cost-effectiveness analysis of pre-exposure prophylaxis for HIV-1 prevention in the Netherlands: a mathematical modelling study. Lancet Infect Dis 2016; 16(12): 1423-9.

- ³³ Ong KJ, Desai S, Field N, Desai M, Nardone A, van Hoek AJ, et al. Economic evaluation of HIV pre-exposure prophylaxis among men-who-have-sex-with-men in England in 2016. Euro Surveill 2017; 22(42): 17-00192.
- ³⁴ Ouellet E, Durand M, Guertin JR, LeLorier J, Tremblay CL. Cost effectiveness of 'on demand' HIV pre-exposure prophylaxis for non-injection drug-using men who have sex with men in Canada. Can J Infect Dis Med Microbiol 2015; 26(1): 23-9.
- ³⁵ Paltiel AD, Freedberg KA, Scott CA, Schackman BR, Losina E, Wang B, et al. *HIV preexposure prophylaxis in the United States: impact on lifetime infection risk, clinical outcomes, and cost-effectiveness.* Clin Infect Dis 2009; 48(6): 806-15.
- ³⁶ Schneider K, Gray RT, Wilson DP. A cost-effectiveness analysis of HIV preexposure prophylaxis for men who have sex with men in Australia.
 Clin Infect Dis 2014; 58(7): 1027-34.

The Health Council of the Netherlands, established in 1902, is an independent scientific advisory body. Its remit is "to advise the government and Parliament on the current level of knowledge with respect to public health issues and health (services) research..." (Section 22, Health Act). The Health Council receives most requests for advice from the Ministers of Health, Welfare and Sport, Infrastructure and Water Management, Social Affairs and Employment, and Agriculture, Nature and Food Quality. The Council can publish advisory reports on its own initiative. It usually does this in order to ask attention for developments or trends that are thought to be relevant to government policy.

Most Health Council reports are prepared by multidisciplinary committees of Dutch or, sometimes, foreign experts, appointed in a personal capacity. The reports are available to the public.

This publication can be downloaded from www.healthcouncil.nl.

Preferred citation:

Health Council of the Netherlands. PrEP effectiveness and cost effectiveness. Review of the literature. Backgrounddocument to Preventive use of HIV medication. The Hague: Health Council of the Netherlands, 2018; publication no. 2018/06Ae.

All rights reserved

